FRIENDS in the context of micro grid research

Kiichiro Tsuji Osaka University

Analysis on energy systems in urban area

Search for "optimal " systems: environmentally compatible energy efficient infrastructure

JSPS research project: 1997-2001

Handai Frontier Research Center research project: 2002-2004

Integrated energy service system and multiple objective optimization

Energy system optimization for specific area: Concepts of modeling

Energy system options

(a) Residential Houses

Symbols	Components
CNV	Air-conditioner + Stove + Gas boiler
SLR	CNV + Solar generation system + Solar-type water heater
ELE	Air-conditioner +Electric water heater + Electric cooking appliance
DHC	DHC(District Heating & Cooling)

(b) Business & Commercial Buildings

Symbols	Components
ARH	Absorption refrigerator and heating unit
ER	Electric turbo refrigerator + Boilei
GE1, GE2 FC1, FC2	Electric turbo refrigerator + Boiler + CGS(FC or GE) + Absorption refrigerator
НР	Heat pump system with heat accumulation equipment
DHC	DHC(District Heating & Cooling)

DHC plant configuration and constraints

$$\eta_{gt}^{e} \cdot x_{1,s,t} + x_{6,s,t} - x_{9,s,t} = E_{DHC,s,t} + x_{3,s,t}$$

$$\eta_{er} \cdot x_{3,s,t} + \eta_{ar(st)} \cdot x_{4,s,t} = C_{DHC,s,t}$$

$$\eta_{hc} \cdot x_{5,s,t} = H_{DHC,s,t}$$

$$\eta_{gt}^{h} \cdot x_{1,s,t} + \eta_{br} \cdot x_{2,s,t} = x_{4,s,t} + x_{5,s,t} + x_{8,s,t}$$

$$x_{7,s,t} = x_{1,s,t} + x_{2,s,t}$$

Energy flow constraints in DHC plant

Multiple objective linear optimization model

Evaluation Indices:

- · Cost
- Primary Energy Consumption
- · CO₂ Emission

Variables:

- ·Share of energy system options
- Capacity and operational strategy for DHC co-generation plant

Developed by Sugihara & Tsuji

Reference Scenario

Office	ARH(24.4%) ER(75.64%)
Hotel	ER
Hospital	ER
Retail Store	ER
Restaurant	ER
Detached House	CNV
Apartment	CNV

Input data: Area for study

	Floor area [m ²]
Office	807,610
Hotel	58,349
Hospital	54,743
Retail store	281,219
Restaurant	53,780
Detached house	1,250.973
Apartment House	879,753

Input data: End-use energy demand for 12 representative days

Input data: End-use energy demand for 12 representative days

Tradeoff curves: Cost vs. CO₂ emission

Distributed generation will increase as CO₂ constraint get more severe

Tradeoff curves: Cost vs. Primary energy consumption

Distributed generation will increase as primary energy constraint get more severe

c) Residential sector

Needs for new electric energy delivery system

[1] Penetration of Distributed Photovoltaic
Generation

Reverse power problem

Frequency fluctuation

Voltage rise in distribution line Protection problem in distribution system

- [2] Deregulation of Electricity Market
 - Diversification of Customer Needs

```
Unbundled power quality service uninterruptible power lower-price power
```

Quality of Power

Definitions of Events by IEEE Std.1159-1995

Voltage Stability

- Under-voltage & Over-voltage
- Voltage Sag
- Voltage Swell
- · Phase Shift
- Flicker
- Frequency

Continuity of Supplying Power

- Momentary Interruption
- Temporary Interruption
- Sustained Interruption

Voltage Waveform

- Transient
- Three Phase Voltage

unbalance

- Harmonic Voltage, Current
- Notch

Customer Needs

Does every customer request very high quality in power supply?
What if a customer can choose power of different quality with different

- ⇒Power system configuration that allows a customer to choose.
- ⇒Can be realized by the use of power electronics

Concept of FRIENDS

Prof.Hasegawa, Prof.Nara 1994

FRIENDS

By use of QCC(Quality Control Center)

- [1] Several qualities of power are supplied to customers.
- [2] Unbalance and harmonics current from loads are compensated.
- [3] Power fluctuation from distributed generators (DG) and loads is compensated, and reverse power from DGs is absorbed.

(Flexible Reliable and Intelligent

Electrical eNergy Delivery System)

Conventional Radial Distribution Network

FRIENDS Network

Example of QCC: Power flow in normal operation

Levels of Power Quality in 3phase4wire System

Events	Nom al	H igh	Premium
Voltage Sags	×	\bigcirc	\bigcirc
Voltage Swells	×	\bigcirc	\bigcirc
Phase shift	×	×	\bigcirc
Instantaneous 0 utage	×	×	\bigcirc
Short t i m e outage	×	×	\bigcirc
Long time outage	×	×	×
Unbalance in 3 phase	\triangle	\triangle	\triangle
Flicker	\bigcirc	\bigcirc	\bigcirc
Unbalanced Current	\bigcirc	\bigcirc	
Hamonic Current			

Example of QCC:

Power Flows in Normal Operational Condition

Power Flows in UPS Operation

Levels of Power Quality for AC type QCC

Events	Normal	High	Premium
Voltage Sags	×		\bigcirc
Voltage Swells	×	\bigcirc	\bigcirc
Phase shift	×		
Instantaneous Outag	e ×	×	
Short time outage	×	×	
Long time outage	×	×	
Unbalance in 3 phas	e ×		
Flicker	\bigcirc	\bigcirc	
Unbalanced Current	\bigcirc	\bigcirc	\bigcirc
Harmonic Current	\bigcirc	\bigcirc	\bigcirc

Concept of Power Exchange among QCCs

QCC: Interface with Power Network

QCC: Quality Control Center CGS:Cogeneration System DHC:District Heating and Coc ESS: Energy Storage System HP: Heat Pump SL: Solar energy Utilization System

——— Electric Power ——— City Gas ——— Thermal Energy

Optimization of QCC Allocation

Minimization of Total Cost of Distribution Lines

$$F(x_1, x_2, ..., x_n) = (1/2) \int C_i \left(\min \|x - x_i\|^2 \right) P(x) dx$$
$$= (1/2) \sum_{i=1}^n \int_{v_i} C_i \|x - x_i\|^2 P(x) dx$$

where, C_i : (cost of unit power transmission)/(capacity of QCC i)

x: location of a load point, (x^1, x^2)

 \mathbf{x}_i : location of QCC i, (x_i^1, x_i^2)

P(x): specific load at load point x

Optimization of Network

[Objective function]

Min.
$$\alpha \left(\sum_{n=1}^{ND} (aX_n + bYN_n) + \sum_{m=1}^{BR} c_m YL_m \right) + \beta \sum_{t=1}^{T} Oloss^t$$

Distributed Transmission Transmission loss generation cost line cost

[Constraints]

(DG's maximum capacity)

$$X_n \in \{x^{1}n, x^{2}n, ..., x^{i}n, ..., x^{L}n\} (n = 1, \dots, ND)$$

(Expected power interruption cost)

$$\sum_{t=1}^{T} \sum_{r=1}^{FLT} \frac{1}{T} p_r BLCost \quad rt \leq \varepsilon$$

(Line power flow

$$\operatorname{cap}_{\underline{R}\underline{c}}\operatorname{ity}P_{m}^{rt} \leq \overline{P_{m}} \ (m=1,\cdots,BR)(r=1,\cdots,FLT)(t=1,\cdots,T)$$

Possible Image of FRIENDS in the Context of Micro Grid

Concluding Remarks

- 1) Energy system optimization for specific area under the CO₂ reduction constraint results in introducing various distributed power generation
- 2) Power distribution network must be redesigned: New concepts are necessary
- 3) FRIENDS is one of the possible forms of micro grid Current status of research:
 - ► Various forms and circuits of QCC have been proposed
 - Some of the types of QCC have been constructed and tested in lab
 - Customized or Unbundled Power Quality Services can be realized
 - ► Power exchange between QCCs have been tested in lab

Thank you for your attention